AtCoder Beginner Contest 377

AtCoder Beginner Contest 377
Lazy_boy_A.Rearranging ABC
题目描述
You are given a string $S$ of length $3$ consisting of uppercase English letters.
Determine whether it is possible to rearrange the characters in $S$ to make it match the string ABC
.
给定字符串$s$,判断是否可以组成 $ABC$
解题思路
排个序就行了
参考代码
|
B.Avoid Rook Attack
题目描述
There is a grid of $64$ squares with $8$ rows and $8$ columns. Let $(i,j)$ denote the square at the $i$-th row from the top $(1\leq i\leq8)$ and $j$-th column from the left $(1\leq j\leq8)$.
Each square is either empty or has a piece placed on it. The state of the squares is represented by a sequence $(S_1,S_2,S_3,\ldots,S_8)$ of $8$ strings of length $8$. Square $(i,j)$ $(1\leq i\leq8,1\leq j\leq8)$ is empty if the $j$-th character of $S_i$ is .
, and has a piece if it is #
.
You want to place your piece on an empty square in such a way that it cannot be captured by any of the existing pieces.
A piece placed on square $(i,j)$ can capture pieces that satisfy either of the following conditions:
- Placed on a square in row $i$
- Placed on a square in column $j$
For example, a piece placed on square $(4,4)$ can capture pieces placed on the squares shown in blue in the following figure:
How many squares can you place your piece on?
给出棋盘,其中放有的位置为 #
, 在放有棋子的上下左右四个方向不能放棋子,问有多少个位置可以放棋子.
解题思路
模拟下即可
参考代码
|
C.Avoid Knight Attack
题目描述
There is a grid of $N^2$ squares with $N$ rows and $N$ columns. Let $(i,j)$ denote the square at the $i$-th row from the top $(1\leq i\leq N)$ and $j$-th column from the left $(1\leq j\leq N)$.
Each square is either empty or has a piece placed on it. There are $M$ pieces placed on the grid, and the $k$-th $(1\leq k\leq M)$ piece is placed on square $(a_k,b_k)$.
You want to place your piece on an empty square in such a way that it cannot be captured by any of the existing pieces.
A piece placed on square $(i,j)$ can capture pieces that satisfy any of the following conditions:
- Placed on square $(i+2,j+1)$
- Placed on square $(i+1,j+2)$
- Placed on square $(i-1,j+2)$
- Placed on square $(i-2,j+1)$
- Placed on square $(i-2,j-1)$
- Placed on square $(i-1,j-2)$
- Placed on square $(i+1,j-2)$
- Placed on square $(i+2,j-1)$
Here, conditions involving non-existent squares are considered to never be satisfied.
For example, a piece placed on square $(4,4)$ can capture pieces placed on the squares shown in blue in the following figure:
How many squares can you place your piece on?
给定$n * n$ 的棋盘和 $m$个棋子位置,其中棋子能走的位置上图所示,问多少个位置可以放棋子,并且不被吃掉
解题思路
模拟,需要注意边界处理
参考代码
|
D.Many Segments 2
题目描述
You are given two sequences of positive integers of length $N$, $L=(L_1,L_2,\ldots,L_N)$ and $R=(R_1,R_2,\ldots,R_N)$, and an integer $M$.
Find the number of pairs of integers $(l,r)$ that satisfy both of the following conditions:
- $1\le l \le r \le M$
- For every $1\le i\le N$, the interval $[l,r]$ does not completely contain the interval $[L_i,R_i]$.
给你两个长度分别为 $N$ 、 $L=(L_1,L_2,\ldots,L_N)$ 和 $R=(R_1,R_2,\ldots,R_N)$ 的正整数序列,以及一个整数 $M$ 。
求满足以下两个条件的整数对 $(l,r)$ 的个数:
- $1\le l \le r \le M$
- 对于每一个 $1\le i\le N$ ,区间 $[l,r]$ 并不完全包含区间 $[L_i,R_i]$ 。
解题思路
考虑 $O(m)$的同时,维护一个左边界,就是当前位置能最多往前多少是刚好不完全覆盖的,最后这个左边界需要取个
max
,因为如果前面的左边界更右,那后面的左边界也要和前面一样。
参考代码
|
E.Permute K times 2
题目描述
You are given a permutation $P=(P_1,P_2,\ldots,P_N)$ of $(1,2,\ldots,N)$.
The following operation will be performed $K$ times:
- For $i=1,2,\ldots,N$, simultaneously update $P_i$ to $P_{P_i}$.
Print $P$ after all operations.
给定长度为 $N$的数组 $P$,将 $P_{i}$替换为 $P_{P_{i}}$操作 $K$次,输出 $K$次操作后的数组.
解题思路
在替换时,某个数多替换几轮就可能回到替换前的位置,那么我们就只需要找出环的大小即可,随后再取模即可
参考代码
|